
Pixie Reference Manual

Okan Arikan

February 25, 2003

Contents

1 User’s Guide 2
1.1 Running Pixie . 2

1.1.1 From the Binary Distribution 2
1.1.2 From the Source Distribution 2

1.2 Hiders . 3
1.3 Writing Custom Display Drivers 4
1.4 Non-Standard Options . 6

1.4.1 Seachpath Options . 6
1.4.2 Limits Options . 6
1.4.3 Hider Options . 7
1.4.4 IO Options . 7

1.5 Non-Standard Attributes . 7
1.5.1 Dice Attributes . 7
1.5.2 Displacementbound Attributes 9
1.5.3 Visibility Attributes . 9
1.5.4 Trace Attributes . 9
1.5.5 Object Attributes . 9

1.6 Area Light Sources . 10
1.7 Occlusion Culling . 10
1.8 Raytracing in C with Pixie . 11
1.9 Network Parallel Rendering . 12
1.10 DSO Shaders . 12

1.10.1 In DLL/SO . 12
1.10.2 In SL . 14

1.11 Transparency Shadow Maps . 14
1.12 Version Management . 14
1.13 Pixie Liminations . 14

1

Chapter 1

User’s Guide

1.1 Running Pixie

1.1.1 From the Binary Distribution

When you open the archive, everything should be under the directory Pixie-X.Y.Z

where X.Y.Z is the version number. This directory is your PIXIEHOME. You may want
to set this environment variable to the directory that you extracted so that Pixie
can find the default display drivers and shaders. In addition, you may want to add
Pixie-X.Y.Z/bin into your PATH environment variable for easy access. On UNIX
platforms, you should also add Pixie-X.Y.Z/lib into your LD LIBRARY PATH variable.

1.1.2 From the Source Distribution

When you extract the Pixie source distribution, everything should be under a single
directory Pixie-X.Y.Z where X.Y.Z is the version number. You should then compile
and create a binary distribution:

Windows

1. Open Pixie-X.Y.Z/Pixie.dsw

2. Go to Build->Batch build

3. Select the programs you need to build

4. Hit OK

5. After the compilation is finished, execute Pixie-X.Y.Z/makeinst.bat

Unix

1. Under Pixie-X.Y.Z

2. Type ./makeunix

3. Type ./configure --path=Pixie

4. Type make

2

5. Type make inst

You should now have Pixie-X.Y.Z/Pixie with the binary distribution in it. You
can copy this directory wherever you want. That directory is your PIXIEHOME and
contains the renderer. You can now do the environment variable changes explained in
the previous section to get it ready.

To be able to compile Pixie, you will need libtiff which you can download from
http://www.libtiff.org .

1.2 Hiders

Pixie can generate images using raytracing or scan line rendering. As it is often
the case, scan line rendering is much faster than raytracing. However, such methods
may not support accurate reflections/shadows. Since Pixie supports both types of
algorithms, you can combine the best of the two worlds: speed of scan-line rendering
and the accuracy of raytracing.

A hider is the section of the renderer that is responsible for creating the final image.
Essentially, every hider implements a different rendering algorithm. You can switch
between defined hiders using Hider command.

Pixie defines the following hiders:

1. Raytrace (Hider "raytrace"): As the name implies, this hider creates the
final image using raytracing. This involves shooting bunch of rays for every pixel
(defined by PixelSamples) and then filtering and summing the color of every
ray (defined by PixelFilter). This hider also supports adaptive supersampling
which means the renderer will only shoot rays when something interesting is
going on (i.e. there is high frequency detail). The maximum allowable contrast
can be specified using PixelVariance command.

2. Stochastic/Hidden (Hider "stochastic"): This hider creates the final im-
age using scan-line techniques very similar to Pixar’s Reyes architecture 1. Every
specified primitive is split into smaller primitives and deferred until needed. If
the projected size of a subdivided primitive is small enough, a regular grid is
sampled on the patch and the polygons in this grid are rendered using scan-line
methods. Notice that a raytracer may need to keep the entire scene geometry
in the memory in case a future ray can intersect them. On the other hand, the
deferred and render-and-forget feature of this rendering algorithm allows it to
keep a very small memory footprint.

3. Zbuffer (Hider "zbuffer"): This hider is a stripped down version of Stochas-
tic. It does not support motion blur, depth of field or transparency. If your
scene does not involve these effects, this hider can generate an equal quality
output with the Stochastic.

4. Opengl (Hider "opengl"): This is exactly the same with Zbuffer. However,
the final stage of the rendering is implemented with OpenGl. The potential
hardware acceleration makes this hider much faster than any other hider. If
your computer does not have a hardware implemented opengl driver, Zbuffer
is faster. 2.

1The RenderMan (R) Interface Procedures and RIB Protocol are: Copyright 1988, 1989,
Pixar. All rights reserved. RenderMan (R) is a registered trademark of Pixar.

2OpenGL hider is only available on Windows systems for the time being

3

TSM J T OC AOS SS ASS MB DOF
stochastic � � � � � � � �

raytrace � � � � � � � �
zbuffer � �
opengl �

TSM: Transparency shadow maps
J: Jittered sampling
T: Transparency

OC: Occlusion culling
AOS: Arbitrary output samples (output types other than rgbaz)

SS: Super sampling
ASS: Adaptive super sampling
MB: Motion blur

DOF: Depth of field

Table 1.1: Hider capabilities

If you notice, OpenGL hider is implemented as a module. That means if you
want to use it, opengl.dll must be in your procedural path (check "searchpath"

"procedural" option).

1.3 Writing Custom Display Drivers

A display driver is a module [dll/so] that handles the image output. The renderer
will essentially send the rendered tiles of the image to a display driver and then the
driver can display/save it. To write a display driver, you need to create a [dll/so] that
exports the following three functions:

1. void *displayStart(const char *name,

int width,

int height,

int numSamples,

const char *samples,

TDisplayParameterFunction parameterFunc)

This function is called right after WorldBegin and should initialize your dis-
play driver. Most of the parameters have obvious meanings: name is the dis-
play name given by Display. width, height give the image size given by
Format. numSamples, samples give the number of samples per pixel and the
textual definition of the samples given in Display. For example Display "ri"

"rgb" "file" will call the displayStart function of the display driver file
with numSamples=3, samples="rgb". The last parameter parameterFunc can
be used to fetch individual options or parameters given in the Display. The
prototype for this function is defined in dsply.h in the include directory. The
return value from this function is a transparent display handle. This handle will
be used to identify the display in the subsequent calls. A return value of NULL
indicates an error. In this case, no data about this image will be sent to the
driver and thus the functions below will not be called.

4

Name Type Description
quantize float[4] The quantization (min,max,zero,one)
dither float The dithering amount
near float The near clipping plane
far float The far clipping plane
Nl float[16] Column major world to camera transformation matrix
Np float[16] Column major world to NDC transformation matrix

gamma float The gamma correction amount
gain float The gain amount

Software char * Always “Pixie”

Table 1.2: Default display driver parameters

2. int displayData(void *image,

int x,

int y,

int w,

int h,

float *data)

This function is called to deliver data to the display driver. image is the trans-
parent display handle returned by displayStart. x,y give the coordinates of
the top left corner of the tile and w,h give the width and height of the tile.
The renderer will always cover every pixel once and only once. However, the
renderer makes no guarantees about the order or the size of the tiles (i.e. the
renderer may change the tile size and send tiles out of order). The raw data is
given in data where every float gives a sample (i.e. first numSamples floats give
the first pixel). The data is not quantized or clamped to (0,1) before calling
this function. It is the receiver’s responsibility to do that. This function must
return 1 on success and 0 on failure. On failure, the renderer will not send any
more data and will not call the function below (So you should clean whatever
data you allocated before returning).

3. void displayFinish(void *image)

This function is called after WorldEnd to signal the driver that the rendering
is complete and all the pixels have been sent. The image is the transparent
display handle returned by displayStart. This function will not be called if
displayStart returns NULL or displayData returns 0.

Notice that displayStart is called in WorldBegin and displayFinish is called in
WorldEnd. The implementation of the default display drivers file and framebuffer
are provided in source distribution directory. The parameters in table 1.2 are always
defined and the function parameterFunc will return them. A display driver must
implement all three functions to be accepted by the renderer.

Pixie supports opening multiple displays with any combination of global or user
defined variable output types. So you can define a variable before the "Display"

statement and use it as the output type. Note that if your shaders do not set this
global output variable, the result will be garbage.

5

You can also pass different quantization constants to different displays by specifying
"custom" as the quantization type in "Quantize" call (i.e., Quantize "custom" 0 0

0 0 0). This will cause the last display to use this quantization settings.

1.4 Non-Standard Options

This section explains the non-standard Pixie options. The values indicated in the
commands are the default values.

1.4.1 Seachpath Options

These options control the directories where the renderer searches for external resources.
The different directories can be separated by a ":" character. The directories are
searched in the order they are specified in the value. Environment variables can be
inserted by enclosing them between "$" characters. The previous value of this item
can be inserted by "@" character.

Option "searchpath" "string archive" ".:$PIXIEHOME$/models:$RIBS$"

Set the directories where .rib files will be searched.
Option "searchpath" "string procedural" ".:$PIXIEHOME$/lib:$PROCEDURALS$"

Sets the directories for the modules. Modules include DSO shaders and display drivers.
In practice, any dynamically loaded object [dll/so] must be located in these direc-
tories.

Option "searchpath" "string textures" ".:$PIXIEHOME$/textures:$TEXTURES$"

Sets the directories where the texture files are located.
Option "searchpath" "string shaders" ".:$PIXIEHOME$/shaders:$SHADERS$"

Sets the directories where the shader files are located.

1.4.2 Limits Options

These options control the renderer specific limits.
Option "limit" "int gridsize" "512"

This number controls the maximum number of points to be shaded at a time. The
bigger numbers decrease the rendering time but consume more memory.

Option "limit" "int maxrecursion" "5"

This number controls the maximum traytracing recursion depth.
Option "limit" "int texturememory" "2000"

This controls the maximum texture amount to keep in the memory. This number
is specified in kilobytes.

Option "limit" "int shadercache" "1000"

This controls the size of the memory allocated as shader cache. Bigger numbers de-
crease the rendering time in scenes with complicated shaders but increase the memory
usage. This number is specified in kilobytes.

Option "limit" "int hierarchydepth" "40"

The maximum depth of the raytracing hierarchy.
Option "limit" "int hierarchyobjects" "10"

The maximum number of raytracing objects allowable per leaf.
Option "limit" "int bucketsize[2]" "[32 32]"

The image is rendered in buckets of this size. Bigger numbers decrease the rendering
time but increase the memory usage.

6

Option "limit" "int eyesplits" "10"

The maximum number of splits before we give up on a primitive that spans the image
plane.

1.4.3 Hider Options

Options in this category control the hider behavior. For compatibility purposes, you
can pass these options directly to the renderer in the Hider command. (i.e., Hider
"hidden" "jitter" [1]).

Option "hider" "float jitter" "0.5"

This option controls the stochastic jittering amount for each sample. 0 means no
jittering, 1 means jitter the size of a sample.

Option "hider" "int falsecolor" "0"

For the raytracer hider, you can set this option to 1 to generate an image of the
computation time used for each pixel. The whiter a pixel is, more samples for that
pixel is computed.

1.4.4 IO Options

Options in this category control the renderer input/output to the console and com-
patibility features. These options can be used for debugging.

Option "io" "int maskresolution" "1"

If this value is 0, the renderer will print a message saying where each file that it
opens are found.

Option "io" "int maskprintf" "1"

If this value is 0, the renderer will print the printf messages in the shaders.
Option "io" "int maskstats" "1"

If this value is 0, the renderer will print the statistics at the end of each frame.
Option "io" "int maskprogress" "1"

If this value is 0, the renderer will display a progress bar.

1.5 Non-Standard Attributes

The parameters defined in this section are Pixie specific attributes and must be set by
Attribute command.

1.5.1 Dice Attributes

The attributes in this category control how a primitive will be tesselated for raytracing
or scan-line rendering.

Attribute "dice" "int minsubdivision" "2"

This is the minimum number of subdivisions that have to be performed to triangulate
the surface of a primitive for raytracing. If the primitive has a very large curvature,
you may want to increase this number (although default value is largely sufficient).

Attribute "dice" "int maxsubdivision" "10"

This is the maximum number of subdivisions to make in tesselating a surface for
raytracing.

7

Category Option Type Default
searchpath archive string ".:$PIXIEHOME$/models:$RIBS$"
searchpath procedural string ".:$PIXIEHOME$/lib:$PROCEDURALS$"
searchpath textures string ".:$PIXIEHOME$/textures:$TEXTURES$"
searchpath shaders string ".:$PIXIEHOME$/shaders:$SHADERS$"
limit gridsize int 512
limit maxrecursion int 5
limit texturememory int 2000
limit shadercache int 1000
limit hierarchydepth int 40
limit hierarchyobjects int 10
limit bucketsize int[2] [32 32]
limit eyesplits int 10
hider jitter float 0.5
hider falsecolor int 0
io maskresolution int 1
io maskprintf int 1
io maskstats int 1
io maskprogress int 1

Table 1.3: Non-standard options summary

Attribute "dice" "int numprobes" "3"

During the scan line rendering, the renderer needs to estimate the bounding box
of a piece of a primitive. Pixie does this by sampling points on the surface and then
extending the bounding of these points. "numprobes" controls the number of samples
in u and v directions to take in order to estimate the bound. Notice that this is just
an estimate and the renderer may underestimate the correct bound. The right way
to do this is to actually subdivide the surface. But this consumes lost of computation
and memory.

Attribute "dice" "int minsplits" "2"

This controls the minimum number of times a surface is split before dropping into
the reyes pipeline. Since the pixie estimates the surface bounds by sampling, this
number must be greater than 0 for some primitives.

Attribute "dice" "int boundexpand" "0.5"

This is the factor by which Pixie will overestimate the bound of the surface pieces.
The bounding box computed by point sampling on the surface will be expanded by
this factor.

Attribute "dice" "int maxsilhuetteedge" "10"

This value gives the maximum projected size (in pixels) of an edge along the silhuette
for tesselating for raytracing.

Attribute "dice" "int maxborderedge" "10"

This controls the maximum projected size (in pixels) of an edge along the border
of a surface (u=0,v=0,u=1,v=1).

Attribute "dice" "int maxedgelength" "50"

This is the maximum projected size (in pixels) of an edge for tesselating for raytracing.

8

Attribute "dice" "int maxinvisibleedgelength" "0.1"

This controls the maximum length of an edge that is out of the view frustum in
the camera space for tesselating for raytracing.

Attribute "dice" "int binary" "0"

If this value is 1, when sampling a grid on a surface piece, create a power of two
edges on the boundaries. This attribute is used to help the patch cracking problem.

1.5.2 Displacementbound Attributes

These attributes are used to tell renderer how much a displacement shader actually
displaces the surface. This information is vital for accurately tesselating and rendering
surfaces.

Attribute "displacement" "float sphere" "0"

This is the amount in the displacement coordinate system by which the displacement
shader can move the surface.

Attribute "displacement" "string coordinatesystem" "current"

This command sets the coordinate system that the displacement bound is expressed
in.

1.5.3 Visibility Attributes

The attributes in this class control the visibility behaviors of objects.
Attribute "visibility" "int camera" "1"

If 1, the object is visible to camera rays (and to the scanline renderer).
Attribute "visibility" "int trace" "0"

If 1, the object is visible to rays created by the trace shading language command.
Attribute "visibility" "string transmission" "opaque"

This value controls the shadowing behaivor of the object. If this value is "transparent",
the object is not visible to the transmission rays and is considered complately trans-
parent. If it is "opaque", the object is considered opaque. If it is "shader", the surface
shader is executed to find out the opacity. If it is "Os", the opacity of the surface is
copied from the Os attribute.

1.5.4 Trace Attributes

These attributes control the raytracer behavior.
Attribute "trace" "int displacements" "0"

If this value is 1, then the surface is actually displaced during the tesselation for
raytracing purposes. This can be quite expensive.

Attribute "trace" "int numarealightsamples" "1"

This value controls the number of area light source samples to take.

1.5.5 Object Attributes

These attributes control features that can not be classified into any other category
above.

Attribute "object" "string name" ""

This attribute can be used to attach a name the object. When reporting errors,
this name will also be printed.

9

Category Attribute Type Default
dice minsubdivision int 2
dice maxsubdivision int 10
dice numprobes int 3
dice minsplits int 2
dice boundexpand float 0.5
dice maxsilhuetteedge float 10
dice maxborderedge float 10
dice minsubdivision float 2
dice maxedgelength float 50
dice binary int 0
displacement sphere float 0
displacement coordinatesystem string "current"
visibility camera int 1
visibility trace int 0
visibility transmission string "opaque"
trace displacements int 0
trace numarealightsamples int 1
object name string ""

Table 1.4: Non-standard attributes summary

1.6 Area Light Sources

Pixie supports true area light sources. That means, the area light source shader will be
executed on the surface of the area light source and thus can use any geometry variable
related to the attached surface. The attribute "numarealightsamples" control the
number of points for each individual primitive that Pixie will sample on the light
and execute the light shader. Each of these sampling points are treated as individual
light sources in the diffuse,specular calls and inside the illumination statement.
Note that each primitive will be sampled separately. So if there are 10 primitives
inside a light source and the number of area light samples is 5, 50 samples will be
collected/shaded. I know this sucks. The theoretically correct way of operation is to
sample a fixed number directions uniformly sampled toward the light source from the
point being shaded. However, this sampling is quite difficult. I have some ideas about
this though, stay tuned.

Area light source tip: avoid using complicated area light sources :).

1.7 Occlusion Culling

Pixie supports occlusion culling during the scan-line rendering. This is accomplished
by tracking the maximum opaque depth value within the bucket being rendered. If an
object’s minimum depth is greater that this value, object is deferred to the next bucket
or deleted. This potentially doubles the rendering speed although there is a certain
overhead involved for sorting the objects in buckets with their depths and maximum
depth value tracking. However, for high depth complexity scenes, occlusion culling
saves lots of processing.

10

Since the occlusion culling involves tracking the maximum depth in the frame-
buffer, patch cracks that usually manifest themselves as missing pixels impair the
maximum depth estimate. Although binary dicing can ameliorate some of the prob-
lem, Pixie does not have a definitive solution to patch crack problem (any suggestions
?).

An additional consideration is the bucket size. If the size of the buckets are too
big, then the depth variation within the bucket may be too large, decreasing the
effectiveness of the culling.

Currently only stochastic and zbuffer hiders support occlusion culling.

1.8 Raytracing in C with Pixie

You can use the Pixie runtime library to raytrace instead of creating an image. There
are three functions that can be used just before WorldEnd to raytrace. Since these
functions are “C” specific, they do not have rib bindings. Also these functions are
not standard RenderMan (they are Pixie specific). If any of these functions are used,
WorldEnd is skipped and no image will be generated. The auxiliary raytracing com-
mands are:

1. void RiTrace(RtInt n,

RtPoint *from,

RtPoint *to,

RtPoint *Ci);

This function traces n rays starting from "from" and going towards "to" and
returns the radiance in "Ci". The parameters are arrays each of which has "n"

items.

2. void RiVisibility(RtInt n,

RtPoint *from,

RtPoint *to,

RtPoint *Oi);

This function is the same with RiTrace except that it returns the opacity be-
tween two points.

3. void RiTraceEx(RtInt n,

RtPoint *from,

RtPoint *to,

RtPoint *Ci,

RtPoint *Oi,

RtFloat *t,

char **names);

This function can be used to get both the radiance and the opacity as well as the
parametric coordinate of the first hit (in "t[i]" such that P[i] = from[i]*(1-t[i])

+ to[i]*t[i]) and the name of the first object that intersects the ray (in
"names[i]").

Note that these functions trace multiple rays. The performance is improved if the
number of rays is high and if the rays have strong spatial coherence (i.e., they roughly
start from the same position and go towards the same direction). Depending on the
demand, I can add more raytracing functions that have more specialized parameters.

11

1.9 Network Parallel Rendering

Pixie supports network parallel rendering where bunch of computers work on a single
frame. Through this document, I’ll use “client” as the computer that’s dispatching
the rendering job. This is usually the computer that you are working on. I’ll use
“server” for the computers that actually do the rendering. So for a given “rib” file,
multiple servers work for a single client. For a computer to work as a server, a network
rendering deamon has to be running on it. You can spawn a network rendering deamon
on a computer by rndr -d <port>. To render a rib file on the net, you can use: rndr
-s <server1:port1,server2:port2,...> <rib file>. Where <server:port> is an
address descriptor for the server. The address of a server is displayed when you start
the deamon. All the external files (rib, sdr, [dll/so], tif etc.) that the server can not
find on the local computer will be downloaded from the client computer to a temporary
folder (default: temp). At the end of rendering, the contents of the default folder is
deleted. It is important that the directory that you launch the deamon is writable for
this purpose. You also want this directory to be a local one.

1.10 DSO Shaders

Pixie supports the use of DSO functions. That means, you can call regular C/C++
functions implemented in a dll/so from the shading language as if they were built in
functions. The mechanism is quite simple:

1.10.1 In DLL/SO

You need to include shadeop.h which contains the necessary macros. For each func-
tion you implemented as a DSO, you need to create a SHADEOP table:

#include <shadeop.h>

//This is the shadeop dispatch table

//The renderer and the shading language compiler will

// check this table to figure out what function in the

// dll/so implements what.

//

//Each line in the table designates a function

SHADEOP_TABLE(myfun) = {

{"float myfun_f(vector)","myinit_f","mycleanup_f"},

{"vector myfun_v(float,float,float)","",""},

{""} // End the table with an empty entry

};

// This is the function that implements

// float myfun(vector)

SHADEOP(myfun_f) {

float *result = (float *) argv[0];

float *input = (float *) argv[1];

12

result[0] = (input[0] + input[1] + input[2]) / (float)

3;

}

// This is the init function for the previous function

SHADEOP_INIT(myiniy_f) {

return NULL;

}

// This is the cleanup function for the previous function

SHADEUP_CLEANUP(mycleanup_f) { }

// This is the function that implements

// vector myfun(float,float,float)

SHADEOP(myfun_v) {

float *result = (float *) argv[0];

float *input1 = (float *) argv[1];

float *input2 = (float *) argv[2];

float *input3 = (float *) argv[3];

result[0] = input1[0];

result[1] = input2[0];

result[2] = input3[0];

}

The macro SHADEOP TABLE(name) defines a table that contains the prototype for
the DSO function and the names of the init and cleanup functions for that function
for each different polymorphic occurrence of the function name in the DSO. The init
function is called when the dll/so is first loaded into the memory. It must accept
two arguments: a thread ID and a texture context pointer both of which are 0 with
PIXIE. These parameters are provided for compatibility reasons. The init function
must return a void * pointer to a transparent handle for the function. This handle
will be passed to the DSO function and the cleanup functions. The cleanup function
must do any cleanup required by the DSO (for example, de-allocating the memory that
the init function allocates). The only parameter that this cleanup function accepts is
the transparent handle that the init function returns. Finally, the actual DSO function
executes the function. This function receives 3 arguments:

1. void * initdata: This is the handle that the init function returns.

2. int argc: This is the number of arguments passed to the DSO. Note that this
is a redundant argument as you can clearly see the number of arguments at the
prototype of the function. For example, for float myfun(vector) it will always
be 2 (includes the return value).

3. void *argv[]: This is the array of pointers that contains the arguments. The
argv[0] always points to the return value. If there is no return value (void
function), this argument is not used.

For example, "float myfun f(vector)","myinit f","mycleanup f" means that
the function myfun f implements the function float myfun(vector). So whenever,
the renderer needs to execute this particular function, myfun f will be called. The init

13

and cleanup functions for this function are myinit f and mycleanup. These functions
are called only once before the first usage of the myfun f and after the last usage
of myfun f. The code provided above also contains another form of "myfun" which
is polymorphic to the first one: { "vector myfun v(float,float,float)","",""}.
This means, that myfun v implements vector myfun(float,float,float). This ver-
sion of the function myfun does not have any init or cleanup functions (as indicated
by ””), so the initdata parameter with be NULL all the time.

The DSO shaders prepared for the PrMan, Entrophy and RenderDotC should be
compatible with Pixie although I did not test it yet.

1.10.2 In SL

In your shader code, you can now use vector myfun(float,float,float) and float

myfun(vector) without any trouble. The dll/so that contains the implementation
must be in the include directory (indicated by -I parameter). Similarly, the dll/so
that has the implementation must be in the procedural search path. One important
thing that you need to be careful about is that Pixie assumes all the parameters passed
to a DSO function are defined as output. That means if DSO changes an argument,
the change will stick !!!. One last note: a single dll/so may have multiple DSO’s. The
Pixie will automatically search all the dll/so’s in the input directory for the correct
DSO.

1.11 Transparency Shadow Maps

Pixie can generate Transparency Shadow Maps (very similar to deep shadow maps of
PrMan). To generate a TSM, you should specify tsm as the display driver. A TSM
will be generated only if the hider is stochastic.

1.12 Version Management

Since Pixie needs external resources, they have to be compatible with the renderer
that’s being used. As a general rule. Any resource (shader,texture,display driver, etc
...) generated by Pixie V X.Y.Z will be compatible with all Pixie releases V X.Y.*.

1.13 Pixie Liminations

1. For performance considerations, derivatives of the result of shadow or environment
shading language calls can not be evaluated in the raytracing mode. Derivatives
of texture can be used freely.

14

