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Abstract

In this paper, we present a technique we call “cartoon capture and
retargeting” which we use to track the motion from traditionally
animated cartoons and retarget it onto 3-D models, 2-D drawings,
and photographs. By using animation as the source, we can produce
new animations that are expressive, exaggerated or non-realistic.

Cartoon capture transforms a digitized cartoon into a cartoon
motion representation. Using a combination of affine transforma-
tion and key-shape interpolation, cartoon capture tracks non-rigid
shape changes in cartoon layers. Cartoon retargeting translates this
information into different output media. The result is an animation
with a new look but with the movement of the original cartoon.

Keywords: Animation, Computer Vision, Deformations, Morph-
ing, Object Tracking, Shape Blending, Video.

1 Introduction

In this paper, we present techniques to extract motion from tradi-
tional animation, a process called cartoon capture, and reuse these
motions for other characters, a process called cartoon retargeting.

1.1 Motivation

We can think of animation as having two dimensions: the visual
style (how the image looks, how it is rendered, the style of the draw-
ing or model) and the motion style (how the characters move, the
amount of exaggeration, use of cartoon physics and way in which
the animation principles are used). The visual style of an anima-
tion can be anything from photo-realistic to abstract. The motion
style also varies from one animation to another. It can range from
robotic, to realistic to highly expressive (Figure 1).

Visual style and motion style usually go together. Most tra-
ditional animated cartoons have highly exaggerated drawings and
highly exaggerated motions. These animations are usually created
by highly trained animators who use animation principles to create
motion that is expressive and stylized.

In contrast, photo-realistic computer animations are generally
animated with realistic motion. Physical simulation and motion
capture have been fairly effective for creating such realistic motion.
Simulation techniques are mainly used to create low-level physical
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Figure 1: Animation Styles: Animation has both a visual style and
a motion style. Motion capture works within the green area of this
figure. The pink area represents the realm of cartoon capture.

phenomena and motion capture is used to create realistic human
motions (Green area in Figure 1).

Many research efforts have been devoted recently on how to
reuse motion capture for different animation domains, how to adapt
motion capture to different characters, how to retarget to different
activities, and how to apply machine learning techniques to anima-
tion. In the game and special effects industry, motion capture is
increasingly used to efficiently create realistic motion for movies
and video games. Furthermore, much progress has been made in
improving motion capture technologies. Higher accuracy, real-time
and user-friendly systems, and the increased availability of large
public motion capture databases and service bureaus, give even
more reasons to use motion capture data for many kinds of char-
acter animation.

In contrast, stylized and expressive animation, as done by tra-
ditional animators, is seen as time consuming or even impossible.
Skilled artists are rare and the costs are often prohibitive. Currently,
traditionally drawn animations cannot be easily reused or transfered
to different domains and characters, as is possible with motion cap-
ture.

The main point of this paper is to present new techniques that
bridge the gap between those two worlds. Computer animation
techniques using motion capture input are limited to a realistic mo-
tion style. Cartoon capture is able to transfer the cartoon motion
style into a representation that can be used in the same fashion as
standard motion capture. It can be seen as a new “front-end” when-
ever a more expressive and stylized motion style is needed. We
turn to the masters – highly trained traditional animators – in order
to find the best examples of expressive motion.

Example applications that call for expressive and stylized mo-
tions include game development, consumer level applications, fea-
ture film production, and general research on motion styles.



Figure 2: Overview chart of cartoon capture and retargeting.

Often traditional animators can create the desired motion style
much quicker with pencil test drawings, than with tweaking 3D pa-
rameters in a computer animation program. This technique allows
them to animate on paper, and then transfer the motion to a 2D or
3D character.

1.2 Scope

The pink area in Figure 1, illustrates the range of experiments we
are conducting with this paper. We demonstrate how we can isolate
the motion style of cartoon animation (upper part of Y-axis) and
apply it to different visual styles (the entire range on the X-axis).

One future direction of this research is to qualify and quantify
that pink area. As we better understand the differences between
realistic motion and expressive cartoon motion, we can create fil-
ters that could be used in conjunction with motion capture to inten-
sify or change the style of the movement. Examples include filters
that could add squash and stretch, exaggeration or anticipation and
follow-through. This could be used to create charicatures of famous
people, or simply to allow more variety of motion from a single mo-
tion capture shot.

1.3 Challenges

Because we begin with a 2-dimensional animated video, existing
motion capture techniques are not adequate. There are new chal-
lenges that need to be addressed:

1. Cartoon characters have no markers. Conventional tracking
techniques that rely on point features cannot be applied here.

2. The low frame rate makes tracking difficult. Typical motion
capture systems sample at 60-200 frames per second, while
animation is usually recorded at 24 frames per second. Each
image is often held for 2 frames, thus using only 12 images
per second. This makes the change between images relatively
large.

3. Identifying limb locations in cartoons is difficult. Also, car-
toon objects tend to undergo large degrees of nonrigid de-
formation throughout the sequence. Standard skeletal model-
based motion capture techniques are not able to handle such
motions.

Vision-based tracking techniques and new modeling techniques
are beginning to tackle many of these issues. Much of our cartoon
capture process builds on such vision based techniques.

Because we want to retarget the motion onto a new image, model
or photograph, there are other unique challenges:

1. Much of the current retargeting techniques are based on skele-
tal models, and address challenges on how to map and scale
parameters from one character’s kinematics to a different
character’s kinematics. We circumvent those problems in us-
ing a key-shape based retargeting technique.

2. Since we capture from cartoons, we only have 2D informa-
tion. Some of the investigated retargeting domains are 3D
output models. This is, in general, an under-constrained setup.
We also show how we can tackle 3D motion with 2D to 3D
key-shape mappings.

3. In order to preserve the style, the absolute motion might differ
significantly between input and output. For instance a small
character with long arms will swing those arms differently
than a bigger character with shorter arms. We can handle
some of those mappings in defining different key-shapes and
different interpolation functions for the input and output do-
main. But there are many other motion changes, due to dif-
ferent character physics, that we can not tackle. A “heavy
walk” will remain a “heavy walk”, no matter how the weight
changes from input to output character.

1.4 Cartoon Capture and Retargeting

Figure 2 shows an overview chart of our technique. The input to
cartoon capture is the digitized video, and a user-defined set of key-
shapes (chosen from the source sequence). Cartoon capture trans-
forms a digitized cartoon into a cartoon motion representation. We
parameterize the motion with a combination of affine transforma-
tion and key-weight vectors. In this way, we can describe a wide
range of motion and non-rigid shape deformations. For the cartoon
retarget process, the user has to define for each input key-shape a
corresponding output key-shape, or key-image, or 3D key-model.
The motion parameters are mapped from the source to the target.
We believe that by maintaining the timing and motion parameters
from the original animation, we can maintain most of the ”essence”
of the expressive movement [Whitaker and Halas 1981].

The organization of this paper is as follows: after a discussion of
related work in section 2, we introduce the cartoon motion repre-
sentation in section 3.1. In section 3.2 and 3.3, we will describe two
capture processes. Section 3.4 describes cartoon retargeting, using
the examples we created. Finally, section 4 summarizes our results
and discusses future work and improvement.



2 Related Work

Some previous work has addressed parts of the challenges above.
[Gleicher 1998] describes a method for retargeting motions onto
figures with different proportions. The retargeting problem was
framed as a constraint optimization problem. [Popović and Witkin
1999] applied the principles of physics based animation and con-
straint optimization formulation on motion captured data. This
method produces realistic motions and can be used on characters
with different kinematic structure. Both of these methods require
the input as joint angle data and applies the motion to articulated
figures only.

Expression Cloning [yong Noh and Neumann 2001] introduces
a method to retarget facial expression animation to another head
model. This method maps the motion vectors of the source face
mesh to the target mesh. This approach can be used for retargeting
of non-rigid shapes, but it requires the input as a set of 3D motion
vectors. It also assumes that the source and target object have very
similar topology, otherwise the retargeting of motion vectors would
not be meaningful. In cartoon retargeting, we want a variety of
output formats, such as 3D models, 2D images and photographs,
therefore a more flexible technique is necessary.

There are many other ways to parameterize motion in computer
animation. Our work is most related to representing animation as
interpolation of key shapes as is often used in facial expression ani-
mation [Parke 1972; Pighin et al. 1998]. Professional 3D animation
tools also have software for creating animation from key-shapes.
Most of this work focuses on the synthesis aspect of this method
and are applied to the area of facial animation. Very little work
addresses the inverse problem of extracting the weights for the key-
shaped animation.

There has been extensive work on using Principle Component
Analysis (PCA) and other sub-space techniques to estimate shape
or motion variations [Bregler and Omohundro 1994; Lanitis et al.
1995; Black and Jepson 1996; Blanz and Vetter August 1999], or
sequences of animation [Alexa and Müller 2000] but this has not
been used for retargeting. So far, the focus of those papers is ef-
ficient data representation, learning, or compression applications.
Furthermore, PCA decompositions result in a set of orthogonal ba-
sis vectors. While this is a mathematically elegant representation,
the basis vectors do not have any physical meanings. In cartoon
capture, we want to use key poses that visually make sense to the
animators. The goal is that animators can design key poses for the
output media of their choice by looking at the key poses for the in-
put cartoon and retarget the motion onto the output characters. We
also want something that is intuitive and easy to use. The animators
can make sensible animations using this method without having to
understand the details of the technology.

A related cartoon interpolation system has been demonstrated
by [Ngo et al. 2000]. It uses a configuration-space model based on
simplicial complexes, instead of a key-shape based model. It has
only been demonstrated for interpolation tasks, but could also be
extended to be used for the capture process.

3 Technical Approach

As mentioned previously, the goal of this project is to isolate the
motion style of an existing cartoon animation and apply the same
style to a new output domain. We first describe the parametric mo-
tion representation. Then, we explain how we can capture the pa-
rameters from cartoon input. Finally, we show how we apply the
captured motion style to different output characters.

Figure 3: Shows the motion of the bouncing ball encoded in terms
of the 6 affine parameters.

3.1 Modeling Cartoon Motion

We describe cartoon motion as a composition of two types of defor-
mations: 1) Affine deformations, that encode the global translation,
rotation, scaling, and sheer factors, and 2) Key-shape deformations,
that are defined relative to a set of key-shapes.

3.1.1 Affine Deformations

An important part of cartoon motion comes from the velocity of the
entire body, and how it stretches and squashes in different direc-
tions. We demonstrate this on the bouncing-ball motion in Figure
3. The motion style is determined by how fast the ball travels, the
arcing (shape of the ball trajectory), how much the ball rotates from
frame-to-frame, how much it squashes and stretches, and the tim-
ing of the squash and stretch. We can approximate the motion style
with a sequence of affine deformations as illustrated with the over-
layed grid in Figure 3.

The ball shapeSis deformed to a shapeV(t) at time framet with
affine parametersθ(t) = [a1,a2,a3,a4,dx,dy]:

V = warp(θ ,S) =
[

a1 a2 dx
a3 a4 dy

]
·S (1)

a1,a2,a3, anda4 describe rotation,x/y scale, and shear, anddx,dy
code thex/y translation.Sis a3×N shape matrix[s1, ...,sN] coding
N points in homogenous formsi = [xi ,yi ,1]T . For instance,Scould
be a set of points along the contours of the ball. If we replaceS
with a new contour, for example a donut-shape, or a photograph,
but apply the same affine motionsθ(1), ...,θ(t), the moving shapes
V(1), ...,V(t) completely change, but the motion style remains the
same (See video).

3.1.2 Key-Shape Deformations

Consider a more complicated motion such as the frog jumping on
the left part of Figure 2. With affine parameters, we can approx-
imate the coarse motion, but we miss several important deforma-
tions, such as the extension and contraction of the legs. To cover
those deformations, we use a set of characteristic key-shapesSi (or
blend-shapes). These shapes are picked by the user, and should
include all possible extreme deformations. Figure 2 shows three
example key-shapes. The example shows how the frog transforms
from a stretched-out shapeS1 in the air to a squashed shapeS2 in
landing. All in-between shapes can be approximated as multi-way
linear interpolations. Our motion model extends to:

V = warp(θ ,S1...Sk) =
[

a1 a2 dx
a3 a4 dy

]
· (∑

k

wk ·Sk) (2)



Figure 4: Multi-dimensional Warping Space

The cartoon shapeV is now parameterized by6+ K variables,
θ = [a1,a2,a3,a4,dx,dy,w1, ...,wk], the6 affine parameters (as de-
fined previously), and theK key-shape interpolation weights.

3.1.3 Extended linear warping space

In some domains linear interpolation is a good approximation, but
in many domains, it produces in-between shapes with undesirable
visual artifacts. Restrictions of linear interpolations are demon-
strated in Figure 4. (ShapeS3 is the linear interpolation (average)
of shapeS1 andS2).

It is possible to approximate those in-between shapes with ad-
ditional linear key-shapes. For example adding shapeS4 as a new
key-shape allows us to better approximate the visually meaning-
ful in-betweens ofS1 andS2. In practice, a large number of such
additional key-shapes are needed. We like to avoid this, since it
puts additional burden on the user for defining the large amount of
source and retarget key-shapes.

Another possibility is to replace the linear warping function with
a nonlinear function. For instance, [Alexa et al. 2000] proposed a
nonlinear warping function, that avoids many visual artifacts. Us-
ing such a function helps us in keeping the number of key-shapes
to a compact size, but introduces two new challenges: 1) Alexa’s
and many other nonlinear functions are well defined for the inter-
polation between two key-shapes, but multi-way warping functions
are non-trivial. 2) These functions are highly nonlinear (especially
the multi-way extensions), and their inverse function (that is needed
for cartoon capture) is numerically challenging due to many local
minima and singularities.

We propose a technique that avoids those challenges: We use the
Alexa function as a preprocessing step to enlarge the linear key-
shape set: 1) We automatically generateM in-between shapes for
each pair of hand-picked key-shapesSi ,Sj . This produces a large
set of(K−1)× (K−2)×M shape examples, whereK is the num-
ber the original key shapes. It densely covers the entire cartoon
shape space. 2) We apply Principal Components Analysis (PCA)
on this large shape database [Jollife 1986]. PCA will generate a
mean shapeM, and eigen-vectorsE1, ..., EL that span principal
shape variations in orthogonal directions of the shape space. Every
original example can be approximated withV = M +∑l αl ·El . The
number of eigen-vectors is determined by the maximum allowed

approximation error. If we constrain∑l αl = 1, we can write:

V = αL+1 ·M +
L

∑
l=1

αl (M +El ) =
L+1

∑
l=1

αl ·Sl (3)

Therefore the extended shape space is computed in settingSl :=
M + El andSL+1 := M. Usually the number of automatically de-
rived key-shapes is higher than the original hand-picked shapes (to
cover the nonlinear in-betweens), but sometimes it can be lower,
when the user has chosen redundant key-shapes.

Theextended linear warping spacegives us the modeling power
of more complex nonlinear warping functions, but we keep all nu-
merical advantages, due to the linear key-shape representation. Fur-
thermore, this technique allows us to transform a function (like
Alexa’s) that is only defined for shape pairs into a multiway warp-
ing function of more than2 key-shapes. This technique will show
its full potential especially for our video-capture process, as we will
describe later.

3.1.4 Sub-Part Decomposition

Simple characters like the bouncing ball example or the frog defor-
mations can be modeled with a global set of affine and key-shape
parameterizations, but more complicated characters should be split
into sub-parts. For example, in articulated figures, the leg deforma-
tion can be modeled separately from the arm deformations, and the
head deformations.

In the following section we describe three tasks that use the mo-
tion model (2): 1) Contour capture, that assumes a known contour
V and solves forθ , 2) Video capture, that applies (2) directly to the
unlabeled video to solve forθ , and 3) Cartoon-retargeting, which
takes aθ and differentSi to generate a new shape motionV.

3.2 Contour Capture

The input is a sequence of cartoon contours:V(1), ...,V(t) and the
hand-labeled key-shapesS1, ...,SK . If the animator used a computer
tool, thoseV vectors can come directly from the tool, or the vectors
will be hand-rotoscoped from stock-footage animation. GivenV,
the equation (2) is used to solve forθ .

Since our cartoon motion model will not exactly match the con-
tour input, we estimate a motion vectorθ that will approximate the
contour input. This can be done in minimizing the following error
term:

Err = ||V−warp(θ ,S1, ...,Sk)||2 (4)

We minimize this term with a 2 step procedure. 1) First we com-
pute the affine motion parameters, 2) We estimate the key-weights
on affine aligned shapes.

Affine Capture: Estimating affine motion of contours can be
done with a closed-form solution. We measure the affine motion
in minimizing the following error term:

Erra f f = ||V−
[

a1 a2 dx
a3 a4 dy

]
·S1||2 (5)

The standard least-squares solution is

[
a1 a2 dx
a3 a4 dy

]
:= V ·ST(S·ST)−1 (6)



Key-Weight Capture: Now we need to find the set of key-
weightswi in minimizing the full approximation error:

Err = ||V−
[

a1 a2 dx
a3 a4 dy

]
·∑

k

wk ·Sk||2 (7)

We experienced improved results if we put additional constraints
on the key-weightswk. So far we have ignored the fact that the
shape space ofS1, ...,Sk is much larger than just the visually correct
in-between shapes. We would like to avoid the case that noise and
other small (unmodeled) variations ofV will cause very large posi-
tive and negative key-weightswi . This causes severe problems for
the retargeting task. Many “illegal” shapes can be generated with
large weights. Usually most in-between shapes are generated by
using only a few key-shapes (only a fewwi are non-zero, and they
sum to1). Furthermore, the key-shapes work best for interpolation,
but only have limited power for extrapolation.

We enforce this with the following constraints:

• Constraint 1: OnlyJ interpolation weights are non-zero. This
enforces that each possible shape lies in a smaller (local-
linear)J dimensional subspace. Such shapes are closer to the
blue curve in Figure 4.

• Constraint 2: All key-weights add to1. If all key-shapes have
the same volume, and we also constrain the affine matrixA
to be a rotation matrix (without scale change), this constraint
approximates an important animation principle called “preser-
vation of volume”. The volume preservation is violated, if the
key-shapes are too far from each other (likeS1 andS2 in figure
2).

• Constraint 3: All weights must lie in a margin [T1-T2]. Usu-
ally T1 = -0.5 and T2 = 1.5. This enforces limited extrapola-
tion.

Minimizing the quadratic term of (7) due to the linear equality
and inequality constraints can be done with quadratic programming
[Gill et al. 1981]. We use an implementation that is available in the
optimization toolbox in Matlab.

Since the affine estimation was done relative toS1 and not to the
weighted combination of all key-shapes, we need to iterate. Given
the key-weights, we compute the weighted interpolationS. The new
affine parameters are estimated based onS. We then re-compute the
key-weights based on the new affine adjustedV, and iterate until
convergence.

3.3 Video-Capture

As in contour-capture, the output of video-capture is a sequence of
motion vectorsθ that fit the input data. Now our input data is a
sequence of imagesI instead of contours. We extend our cartoon
motion model such that it directly models image pixel variations.
With this extension we can incorporate the cartoon motion model
into a vision-based region tracking technique [Lucas and Kanade
1981; Shi and Tomasi 1994; Bergen et al. 1992]. This allows us to
track cartoons without contour labels.

We use the following notation:S2×N = [s1, ...,sN] contains the
x/y coordinates of allN pixels of the cartoon image region (Figure
5). I(si) is the graylevel value of an imageI at pixel locationsi .
I(S) denotes the vector of all pixel graylevels in the cartoon region.
And I(warp(S,θ)) is the warped image using thewarp(S,θ) func-
tion. As in contour-capture, we cannot exactly match the image
warp with our motion model (due to noise and inaccuracies of our
model). We therefore want to minimize the following error func-
tion:

errimage= ||It(warp(θ ,S))− I0(S)||2 (8)

Figure 5: Left side illustrates how the shape vectorS is used to
index all pixel locations of the cartoon. Right side shows four key-
shape examples.c©Disney.

This equation states that if we warpIt it should look similar to
I0. The error term of (8) is in a sense the previous error term (7)
mapped through the image functionI .

Affine Capture: For affine motion only, we can rewrite equation
(8) to:

erra f f = ∑
si∈S

(It(A·si +D)− I0(si))
2 (9)

whereA is the rotation, scale and shear part of the affine parame-
ters, andD is the translation. This error function can be minimized
using the well known affine version of the Lucas-Kanade technique
[Bergen et al. 1992; Shi and Tomasi 1994] (a standard least-squares
based technique in the computer vision literature). It is beyond the
scope of this paper to explain this technique in full detail, but we
can briefly summarize the estimation:

We can not directly apply linear least-squares estimation, since
It(A · si + D) is nonlinear. [Lucas and Kanade 1981; Horn and
Schunk 1981] use following linear approximation ofIt :

It(A·si +D)≈ It(si)+ [Ix(si), Iy(si)] · (A ·si +D) (10)

where∆I = [Ix, Iy] is the image gradient ofIt in x and y direction.
We use a 2D Gaussian convolution filter as in [Canny 1986] to es-
timate the image gradient in a noise-robust way. Equation (9) can
we rewritten to:

erra f f ≈ ∑
si∈S

(It(si)+∆I(si) · (A·si +D)− I0(si))
2

= ∑
si∈S

(Hi ·θa f f +zi)
2 (11)

θa f f = [a1,a2,a3,a4,dx,dy]T

Hi = [Ix(i) ·xi , Ix(i) ·yi , Iy(i) ·xi , Iy(i) ·yi , Ix(i), Iy(i)]
zi = It(i)− I0(i)

The standard least-squares solution of this linearized term is

θa f f = (HT ·H)−1 ·HT ·Z (12)

with

H =




H1
...
HN


 and Z =




z1
...
zN


 (13)

Since we use the linear approximation (10), the optimal motion
parameterθ is found in using equation (11) iteratively in a Newton-
Raphson style minimization.



Affine and Key-Shape Capture: If our motion model includes
the affine and key-shape deformation model, we need to further
extend the estimation framework. We replace the image templateI0
with a combination ofL key-images:∑l wl El :

errkeys = ∑
si∈S

(Hi ·θa f f + It(si)−∑
l

wl ·Ek(si))
2 (14)

= ∑
si∈S

([Hi ,E1(i), ...,EL(i)] ·θ + It(i))
2 (15)

The extended vectorθ = [a1,a2,a3,a4,dx,dy,w1, ...,wL]T can be
estimated with standard least squares estimation as above.

The right side of Figure 5 shows example key-images for the
Baloo sequence. Those are the original hand picked key-shapes.
Since the linear interpolation of those hand picked key-images pro-
duce “illegal” shapes (linear interpolating the arm motion merely
generates a double image of both arm configurations), it is essen-
tial, that we use an extended key-shape set as described in 3.2.
Many in-between images are generated from the key-shapes us-
ing the non-linear Alexa-warping function. Applying PCA to the
enlarged dataset, resulted inL “eigen-images”El . This estimation
framework is closely related to [Black and Jepson 1996; Lanitis
et al. 1995; Blanz and Vetter August 1999].

We had good experience with generating5 inbetween images
for each hand-picked key-image. For the tracking we usedL = 10
eigen-images, and the algorithm converged usually after40 itera-
tions. We did not quantify the accuracy of the tracking, but show
for all sequences the tracking points in the video.

Sub-Part Layers: The video-capture process is very sensitive to
outliers. Outliers are pixels that are not part of the cartoon region.
They could be part of the background, or occluding foreground (in-
cluding self-occlusion from other cartoon parts). We discount those
pixels automatically in computing an adaptive alpha matte. Usually,
the cartoon region has a specific color range. We can generate an
alpha-matte in using a probabilistic color segmentation technique.
For instance, the blue hat in Figure 3.3 can be segmented automat-
ically. The second row in Figure 3.3 and Figure 7 shows some
examples. Our video-capture process is then only performed on
pixels that are included in this matte. This can be done by reducing
the summation to only those pixels:

errkeys= ∑
si∈Layer

(It(A·si +D)−∑
l

wl ·Ek(si))
2 (16)

3.4 Retargeting Cartoon Motion

We experiment with different output media, including 2D cartoon
animation, 3D CG models, and photo-realistic output. For each do-
main, we need to model how a specific input key-shape looks in the
output domain. For simple affine deformations, we simply replace
the input template with a template in the output domain. For key-
shape models, we need to design the corresponding key-shape and
the interpolation function in the output domain. The corresponding
output shape can look similar or drastically different from the input
as long as the key poses are consistent in their meanings. For ex-
ample, if key pose 1 in the input cartoon is more extreme than key
pose 2, then key pose 1 in the output image should also be more
extreme, in the same way, than key pose 2 in the output image.

3.4.1 Designing the Output Model and Retargeting

2D Drawing and Photographs: For each key-shape used in
the key-shape deformation, a corresponding 2D shape is drawn in
the output domain. In addition, the corresponding control points

Figure 6: The second row shows the hat color segmentation, the
third row shows the affine capture, and the fourth row shows the
key-shape based tracking of the hat.c©Disney

Figure 7: Shows the color-clustered layer and the key-shape based
tracking of Baloo. c©Disney



Figure 8: 2D example of key-shapes for the input cartoon and cor-
responding output key-shapes

(or contours) between the different output key-shapes are labeled.
Figure 8 shows the key-shapes of a frog and the corresponding key-
shapes of a bunny. The retargeting process is as follows: First, we
extract the affine motion of each output key-shapes with respect to
some reference frame using equation (5). Then, we apply the cho-
sen interpolation function to the affine adjusted key-shapes using
the weights obtained from the cartoon capture process. Finally, the
affine motions of the input cartoon are added to the resulting key-
shapes to produce the final animation.

3D Models: To retarget the input motion to 3D models, the ani-
mator uses a 3D modeling tool to make the key-shapes for the out-
put animation. To retarget the affine motion of the input cartoon
to a 3D model, we need the equivalent of affine motion in 3D. For
the in-plane motion (image plane), we map the affine parameters
just as in the 2D case. We do not explicitly recover the out-of-plane
motion from the input cartoon. This does not however imply that
the models are flat. The 3D information is inferred when we design
the key poses for the output 3D model. For example, as shown in
the top row of Figure 9, it is difficult to measure which direction
the character’s right foot is pointing from the input cartoon draw-
ing. The animator, while doing the 3D modeling, interprets the right
foot as pointing toward the viewer in the first key-shape, as shown
in the bottom row of figure 9. Since the solution to the equation is
such that the weight has to be one for that key-shape and zero for
the other keys, the retargeted output character naturally points his
right foot toward the viewer.

Applying the key-shape deformation to 3D models works the
same way as the 2D examples, except now we might use con-
trol vertices for the mesh or the nurb, depending on the model-
ing choice. Linear interpolation is used for all the 3D examples.
However, we make a special case for retargeting to 3D articulated
figures. We choose to interpolate in the joint angle space since in-
terpolating in the joint-angle space is analogous to the non-linear
shape interpolation function described in section 3.1. The 3D joint
angles are first taken from the 3D model. The joint angles for the
in-between frames are then interpolated using the weights from the
capture process. Note that this is different from interpolating each
joint angle independently. All the joint angles are interpolated with
the same weights from the cartoon capture process and more than 2
key-shapes can be used for each output pose.

Additional Constraints and Post-processing: In many cases,
the translation of the original cartoon needs to be modified to sat-
isfy certain constraints in the output domain. This is due to the fact
that we factor out the affine parameters of the output key poses and
apply the affine parameters of the input cartoon to the output se-
quence. Since the output character can have different proportion

Figure 9: 3D example of key-shapes for the input cartoon and cor-
responding output key-shapes

Figure 10: The hat retargeting sequence. The hat is replaced with a
witch hat. c©Disney

and dimensionality from the input character, using the same affine
motion results in undesirable effects, such as the output character’s
foot going through the ground. In most cases, we found that sim-
ple ad-hoc global translations produced a reasonable result. These
global translations include constraints that ensure that the foot is at
a certain position at a specific time frame.

4 Examples

To demonstrate and test cartoon capture, we create several exam-
ples. First, we use the video-capture technique described in section
3.3 to follow the motion of an animated hat that we then retarget
onto a simple two-dimensional drawing of a different hat. We refit
the new hat onto the original footage. Figure 10 shows few frames
and the video shows the entire capture and retargeting experiment.

We then capture the dance of Baloo fromThe Jungle Bookand
retarget the motion to a drawing of a flower. Again, we use video-
capture techniques to extract the motion parameters and apply them
on the output drawing of the flower. Figure 11 shows the results.

We capture the broom motion from the Sorcerer’s Apprentice se-
quence ofFantasia, and retarget the motion onto a digitized photo
of a broom. We use contour-capture with constraints and retarget-
ing with additional constraints as described in section 3.4, since we
change the broom dimensions. Then we composite the broom se-
quence onto a live-action video sequence. Figure 12 shows several
retargeted brooms.

We also experiment with capturing only one contour, the line-
of-action, as the source of the motion. The line-of-action is a very
important principle in tradition animation. The line-of-action is a



Figure 11: Tracking of Baloo’s dance and retargeting to a flower.
c©Disney

Figure 12: Broom Retargeting Sequence. (The source is not shown
here – It is the famous sequence from the Sorcerer’s Apprentice in
Disney’sFantasia)

single line running through the character, that represents the over-
all force and direction of each drawing. Generally, before drawing
the full character, an animator draws in the line-of-action to help
determine the position of the character. By simply changing the
line-of-action – making it more curved, sloped or arched in a dif-
ferent direction – the entire essence of the drawing can be changed.
We experiment with using the line-of-action as the source in order
to understand how much information we can get from a single con-
tour line and as a starting point for future work using minimal infor-
mation to achieve the greatest results. In this example, we track the
line-of-action from a classic Porky Pig sequence and retarget the
motion of the single contour onto a 2D character. Although there
is not enough information in this contour to solve for more com-
plex motion, such as how the legs move relative to each other, the
essence of the motion is still present in the retargeted output. Figure
13 illustrates this example.

We also create examples of cartoon captured motion, retargeted
onto 3D models. In the first example, we capture the motion from a
walking character and retarget to a 3D model of an otter. In Figure

Figure 13: Capturing line-of-action and retargeting of Porky Pig
images from Corny Concerto (1943), onto a new 2D character

Figure 14: Motion of walking cartoon character retargeted to 3D
model

Figure 15: Motion of jumping character retargeted to 3D model

9, we show some of the key poses.
Figure 14 shows some final rendered frames in the retargeted

sequence. Again, please consult the video for more information.
In the next example, we capture a cartoon character jumping in a

way that is impossible for an average human, and retarget onto the
same 3D model. Again, contour capture is used to estimate the mo-
tion parameters. Figure 15 shows some frames from the retargeted
sequence.

The video shows all results for the different target media. Our ex-
periments in cartoon capture provide an opportunity to test the car-
toon capture concept and technique. While the results have room
for technical improvement, they clearly demonstrate that the con-
cept has merit. The motion style from the captured cartoon is suc-
cessfully translated to the new image. The timing is preserved and
the key-shapes from the original animation are mapped onto the
new animation. The animations with the cartoon capture process
are expressive and compelling. The personalities of the original
cartoon characters are transferred to the target images.

5 Discussion

We have demonstrated a new technique that can capture the motion
style of cartoons and retarget the same style to a different domain.
This is done by tracking affine motion and key-shape based interpo-
lation weights. We described two different versions of capture, one
starting with cartoon contours, and one that can be applied directly
to unlabeled video. Both techniques are based on least-squares
techniques similar to other estimation techniques commonly used
in computer vision. The new contribution of our technique is the
use of an extended linear warping space and additional constraints
on the interpolation weights. The extended PCA space allows us
to approximate any nonlinear warping function, without increasing
the complexity or lowering numerical robustness for the video cap-
ture. Furthermore, the linearized PCA space allows us to perform
multiway warping with more than two key-shapes, even if the non-



linear function we approximate, does not offer this feature. The new
constraints on the interpolation weights are usually not necessary
for tracking applications only, but has proven useful for retargetting
domains.

With our strategy of designing input-output key-shape pairs, we
circumvented many problems that arise in standard skeleton based
motion adaption.

We believe this work is significant for its technical contribution,
but more importantly, this project attempts to bridge the gap be-
tween techniques that target the traditional expressive animation
world and the motion capture based animation world. Certain do-
mains require increased realism, and motion capture data is a more
appropriate source, but many other domains call for more expres-
sive and stylistic motion, and traditional animation data is the ap-
propriate source. We have shown, that we can treat traditional ani-
mation footage in ways similar to what has been done with motion
capture data. Therefore we hope to create new opportunities for
researching and using a wider range of motion styles.

The results, while compelling for many reasons, have room for
improvement. We addressed several of the challenges listed in sec-
tion 1, but only touched on many other challenges. The 2D to 3D
mapping is possible, but puts a large burden on the key-shape de-
signer. The more complex the motion of a character is, the more
key-shapes are needed. In some very complex domains, it might
even be more labor to create the key-shapes, than to animate in the
new domain directly by hand. Furthermore, the capture techniques
can deal with very complex and challenging motion, but also need
to be improved in accuracy. We have not employed any temporal
constraints, like smoothness or specific dynamic model constraints.
Many of our animations contain jitter, although very often the jitter
is not that distracting, since the exaggerated motion dominates the
perception.

Some of our future research directions will include how to in-
corporate further dynamical constraints to increase the robustness.
Also, we plan to experiment with alternative minimization tech-
niques for the capture process. Sampling techniques have been
proven to be more robust for video motion tracking.

Currently, we are investigating methods to allow editing of mo-
tion styles. This would allow a single source motion to be used
in a variety of scenes. We also want to work on filters for motion
capture that add animation principles to create more expressiveness
in the motion and allow a single motion capture sequence to have
many motion styles.
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